首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8196篇
  免费   1104篇
  国内免费   2438篇
化学   10656篇
晶体学   37篇
力学   53篇
综合类   70篇
数学   8篇
物理学   914篇
  2024年   9篇
  2023年   125篇
  2022年   182篇
  2021年   331篇
  2020年   454篇
  2019年   356篇
  2018年   349篇
  2017年   306篇
  2016年   426篇
  2015年   412篇
  2014年   522篇
  2013年   859篇
  2012年   581篇
  2011年   540篇
  2010年   489篇
  2009年   492篇
  2008年   573篇
  2007年   613篇
  2006年   532篇
  2005年   473篇
  2004年   463篇
  2003年   491篇
  2002年   295篇
  2001年   263篇
  2000年   250篇
  1999年   212篇
  1998年   156篇
  1997年   165篇
  1996年   154篇
  1995年   146篇
  1994年   110篇
  1993年   84篇
  1992年   76篇
  1991年   55篇
  1990年   49篇
  1989年   30篇
  1988年   24篇
  1987年   18篇
  1986年   13篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   13篇
  1980年   9篇
  1979年   3篇
  1978年   2篇
  1973年   2篇
  1969年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Thermal gas-phase reactions of the ruthenium-oxide clusters [RuOx]+ (x=1–3) with methane and dihydrogen have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. For methane activation, as compared to the previously studied [RuO]+/CH4 couple, the higher oxidized Ru systems give rise to completely different product distributions. [RuO2]+ brings about the generations of [Ru,O,C,H2]+/H2O, [Ru,O,C]+/H2/H2O, and [Ru,O,H2]+/CH2O, whereas [RuO3]+ exhibits a higher selectivity and efficiency in producing formaldehyde and syngas (CO+H2). Regarding the reactions with H2, as compared to CH4, both [RuO]+ and [RuO2]+ react similarly inefficiently with oxygen-atom transfer being the main reaction channel; in contrast, [RuO3]+ is inert toward dihydrogen. Theoretical analysis reveals that the reduction of the metal center drives the overall oxidation of methane, whereas the back-bonding orbital interactions between the cluster ions and dihydrogen control the H−H bond activation. Furthermore, the reactivity patterns of [RuOx]+ (x=1–3) with CH4 and H2 have been compared with the previously reported results of Group 8 analogues [OsOx]+/CH4/H2 (x=1–3) and the [FeO]+/H2 system. The electronic origins for their distinctly different reaction behaviors have been addressed.  相似文献   
12.
New approach for the reversal tolerant anode for polymer electrolyte membrane fuel cell is suggested by using the multifunctional IrRu alloy catalyst having concurrent superior activities towards hydrogen oxidation reaction and oxygen evolution reaction to mitigate the degradation of anode under the fuel starvation condition.  相似文献   
13.
In this study, we present a versatile and easy procedure for modifying a cobalt ferrite nanoparticle step by step. A new nanocatalyst was prepared via CuII immobilized onto CoFe2O4@HT@Imine. The catalyst was fully characterized by Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), and vibrating sample magnetometer (VSM) analyses. The current procedure as a green protocol offers benefits including a simple operational method, an excellent yield of products, mild reaction conditions, minimum chemical wastes, and short reaction times. Without any significant reduction in the catalytic performance, up to five recyclability cycles of the catalyst were obtained. The optimization results suggest that the best condition in the oxidation of benzyl alcohol derivatives is 0.003 g of the CoFe2O4@HT@Imine‐CuII catalyst, TEMPO, at 70°C under solvent‐free condition and air.  相似文献   
14.
The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.  相似文献   
15.
A liquid chromatography–tandem mass spectrometric method for the simultaneous determination of 75 abuse drugs and metabolites, including 19 benzodiazepines, 19 amphetamines, two opiates, eight opioids, cocaine, lysergic acid diethylamide, zolpidem, three piperazines and 21 metabolites in human hair samples, was developed and validated. Ten‐milligram hair samples were decontaminated, pulverized using a ball mill, extracted with 1 mL of methanol spiked with 28 deuterated internal standards in an ultrasonic bath for 60 min at 50°C, and purified with Q‐sep dispersive solid‐phase extraction tubes. The purified extracts were evaporated to dryness and the residue was dissolved in 0.1 mL of 10% methanol. The 75 analytes were analyzed on an Acquity HSS T3 column using gradient elution of methanol and 0.1% formic acid and quantified in multiple reaction monitoring mode with positive electrospray ionization. Calibration curves were linear (r ≥ 0.9951) from the lower limit of quantitation (2–200 pg/mg depending on the drug) to 2000 pg/mg. The coefficients of variation and accuracy for intra‐ and inter‐assay analysis at three QC levels were 4.3–12.9% and 89.2–109.1%, respectively. The overall mean recovery ranged from 87.1 to 105.3%. This method was successfully applied to the analysis of 11 forensic hair samples obtained from drug abusers.  相似文献   
16.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   
17.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
18.
We report an innovative, sustainable and straightforward protocol for the synthesis of N,N-diarylamides equipped with nonprotected hydroxyl groups by using electrosynthesis. The concept allows the application of various substrates furnishing diarylamides with yields up to 57 % within a single and direct electrolytic protocol. The method is thereby easy to conduct in an undivided cell with constant current conditions offering a versatile and short-cut alternative to conventional pathways.  相似文献   
19.
Hydroxide-bridged high-valent oxidants have been implicated as the active oxidants in methane monooxygenases and other oxidases that employ bimetallic clusters in their active site. To understand the properties of such species, bis-μ-hydroxo-NiII2 complex ( 1 ) supported by a new dicarboxamidate ligand (N,N′-bis(2,6-dimethyl-phenyl)-2,2-dimethylmalonamide) was prepared. Complex 1 contained a diamond core made up of two NiII ions and two bridging hydroxide ligands. Titration of the 1 e oxidant (NH4)2[CeIV(NO3)6] with 1 at −45 °C showed the formation of the high-valent species 2 and 3 , containing NiIINiIII and NiIII2 diamond cores, respectively, maintaining the bis-μ-hydroxide core. Both complexes were characterised using electron paramagnetic resonance, X-ray absorption, and electronic absorption spectroscopies. Density functional theory computations supported the spectroscopic assignments. Oxidation reactivity studies showed that bis-μ-hydroxide-NiIII2 3 was capable of oxidizing substrates at −45 °C at rates greater than that of the most reactive bis-μ-oxo-NiIII complexes reported to date.  相似文献   
20.
Two novel Co (II)- coordination polymers (CPs) based on 2,5-bis(4-carboxylpheny)-1,3,4-oxadiazole (bcpo), namely [Co/(bcpo)0.5(tib)(H2O)2]n (1) and [Co (bcpo)0.5(bidpe)(H2O)2]n (2) (tib = 1,3,5-tirs(1-imidazolyl)benzene, bidpe = 4,4′-bis (imidazolyl)diphenyl ether) have been synthesized under solvothermal conditions and characterized by powder X-ray diffraction (PXRD), single crystal X-ray diffraction, photochemistry as well as electrochemistry. The investigation of the photo-degradation methyl blue and methyl violet (MB, MV) properties of CPs 1–2 demonstrates that CP 1 shows great performance for the degradation of MB, and CP 2 could efficiently degrade MB/MV. Meanwhile, the possible photo-degradation mechanism has been proposed and explored. Simultaneously, electrochemistry studies show that both CPs 1 and 2 can catalyze water oxidation under an alkaline condition at the potential around 1.20 V vs. NHE with relatively low overpotential of 330–510 mV vs. NHE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号